Liebe Kolleg*innen in der Methoden-Sektion,

im GESIS Fall Seminar in Computational Science gibt es noch einige freie Plätze. Unten die entsprechende Ankündigung.

Viele Grüße

Sebastian

 

***Apologies for cross-posting***

Dear colleagues,

Want to spend some time in September diving into computational social science methods? You can still register for our upcoming courses in this year’s GESIS Fall Seminar in Computational Social Science (01-26 September 2025), which offers a variety of introductory and advanced courses in Mannheim or online.

For example, learn how to unlock the power of images or videos for your research project with cutting-edge methods of Computer Vision. Simulate, test, and enhance theories through data-driven simulations in Agent-Based Computational Modeling. Or go beyond basic descriptive measures and dive deep into statistical models and techniques for analyzing Social Networks.

You can find the complete course program below. Each course features an interactive mix of lectures and hands-on exercises and can be booked separately, so you can tailor your learning experience to match your needs and interests. As some courses are almost booked out, we recommend to register as soon as possible to secure your place.

Introduction to Computational Social Science with R [01-05 September | online]
Johannes B. Gruber, GESIS

Introduction to Computational Social Science with Python [01-05 September | online]
John McLevey, Memorial University

Web Data Collection with Python [08-12 September | online]
Iulia Cioroianu, University of Bath

Web Data Collection with R [08-12 September | online]
Iulia Cioroianu, University of Bath

Introduction to Machine Learning for Text Analysis with Python [15-19 September | Mannheim]
Rupert Kiddle, Vrije Universiteit Amsterdam and Sjoerd Stolwijk, University of Amsterdam

Advanced Methods for Social Network Analysis [15-19 September | now online]
Lorien Jasny, University of Exeter

Computer Vision for Image and Video Data Analysis [15-19 September | Mannheim]
Andreu Casas, Royal Holloway University of London

Agent-Based Computational Modeling [22-26 September | Mannheim]
Daniel Mayerhoffer, University of Amsterdam

From Embeddings to LLMs: Advanced Text Analysis with Python [22-26 September | Mannheim]
Hauke Licht, University of Innsbruck

Causal Machine Learning [22-26 September | online]
Marica Valente, University of Innsbruck

For those without any prior experience in R or Python and those who’d like a refresher, we’re additionally offering two online pre-courses, “Introduction to R” (25-27 August) and “Introduction to Python” (25-28 August).

For detailed course descriptions and registration, please visit our website and sign up here! If you’re looking for recommendations on which courses to combine, we’ve put together a handy guide for you here.

If you can’t make it in September, but you’re curious about what’s going on inside your machine learning models, check out Explainable AI und Fair Machine Learning (22-24 October | online), which takes you on a hands-on tour through this fast-growing research field. Whether you're concerned about bias or just want to understand your model’s decisions, this workshop offers both the theory and practice to get you started.

Never miss a GESIS Training course by subscribing to our newsletter.

Thank you for forwarding this announcement to other interested parties.

Best wishes,
Your GESIS Fall Seminar team

---

GESIS – Leibniz Institute for the Social Sciences
GESIS Fall Seminar in Computational Social Science

email: fallseminar@gesis.org
web:
www.gesis.org/fallseminar
bluesky: https://bsky.app/profile/gesistraining.bsky.social
facebook: https://www.facebook.com/GESISTraining
linkedin:
https://www.linkedin.com/company/gesistraining

 

 

 

 

Sebastian E. Wenz (he/him)

Senior Researcher

KEO | Training

 

Unter Sachsenhausen 6-8 | 50667 Köln

+49 (0) 221 47694-159

sebastian.wenz@gesis.org

www.gesis.org

 

Ein Bild, das Symbol, Logo, Schrift, Grafiken enthält.

Automatisch generierte Beschreibung     Ein Bild, das Logo, Grafiken, Kreis, Screenshot enthält.

Automatisch generierte Beschreibung   Ein Bild, das Kreis, Grafiken, Design enthält.

Automatisch generierte Beschreibung   Ein Bild, das Schrift, Grafiken, Logo, Text enthält.

Automatisch generierte Beschreibung   Ein Bild, das Grafiken, Kreis, Symbol, Logo enthält.

Automatisch generierte Beschreibung   

 

You can find our information on data protection at https://www.gesis.org/en/institute/data-protection